
I A0-AI2 378 SYSTEMS ARCITCCTS INC RANDOLPHi MASSF/ 92COMPUTER SYSTEMS ACQUISITION MTMICS MAWOOM. VOLUME IV. THEOR ETC(i)MAY 62 f 19 8-B0-C-0207L& CLA S-SFIE0 ISDTlt--13(ft) NL

/I,7l
Illllllllllhl
IIIIIIIIIIIIIl
111111111!''''

ESD-TR-82-143(IV)

THEORETICAL SUPPLEMENT FORtOMPUTER
SYSTEMS ACQUISITION METRICS HANDBOOK.

O VOLUME IV.

Systems Architects, Inc.
50 Thomas Patten Drive
Randolph, MA 02368

May 1982

Approved for public release;
Distribution Unlimited.

Prepared for

"IELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR TECHNICAL OPERATIONS AND
PRODUCT ASSURANCE
HANSCOM AIR FORCE BASE. MASSACHUSETTS 01731

82 10 18 073

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fulnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEW AD APPROVAL

This technical report has been reviewed and is approved for publication.

ROBERT V. VIERAITIS, Jr., iLt, USAF 49tMES W. BELY, Jr., Lt Col, USAF
Project Officer Chief, Computer Engineering

Applications Division

FOR THE COJANDER

VALTER V. TURGISS
Acting Director, Engineering and Test
Depty for Tecnical Opertionsand Product Assurancee

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Men Dte rtetdC)D _

REPORT DOCUMENTA.TION PAGE BEFORE MPLETIORM
1. REPORT NUMBER J. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ESD-TR-82-143(IV) ,f -//'. 378
4. TITLE (nd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Theoretical Supplement for Computer Systems
Acquisition Metrics Handbook. Volume IV.

6. PERFORMING O1G. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(&)

Systems Architects, Inc. F19628-80-C-0207

9. §ERFORMINgRG~NjATIfN NAff AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Oyslms~cm~e~sincAREA & WORK UNIT NUMBERS

50 Thomas Patten Drive
Randolph, MA 02368

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Electronic Systems Division (TOEE) May 1982
Hanscom AFB 13. NUMBER OF PAGES

Massachusetts 01731 78
14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATIONDOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release! distribution unlimited.

17. DISTRIBUTION STATEMENT (f the abstract entered n Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessry end identify by block nuber)

Computer systems
Metrics
Quality assurance
Software

TRACT (Cont um an reverse eide It neoeeemr end Identift by Wck nise)

Nzvoline documents the background research and describes the various
metrics approaches that were analyzed, It goes on to describe the methodology
selected and defines the framework for the hanudbook'

DO , 1473 EDITION OF I NOVG IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dae 8ftner

W
W

TABLE OF CONTENTS

Section Title Page

INTRODUCTION AND BACKGROUND

1.1 NEED FOR SQA MEASUREMENTS I-
1.2 SOFTWARE METRICS LITERATURE REVIEW 1-3
1.3 CONCEPTS AND CLASSIFICATION OF

SOFTWARE METRICS...... 1-6
1.3.1 Concepts of Software

Metrics 1-6
1.3.1.1 Boehm, Brown and

Lipow's Quality
Characteristic
Tree 1-7

1.3.1.2 Gilb's Software
Metrics.. . . . 1-9

1.3.1.3 Halstead's Software
Science 1-9

1.3.1.4 McCall's Metrics 1-10
1.3.1.5 McCabe's Complexity

Measure.. 1-12
1.3.1.6 Measures of Compre-

hensibility . . 1-13
* 1.3.1.7 Summary 1-14

II GE METRIC EFFORT

2.1 SCOPE OF GE METRICS II-1
2.1.1 Framework........ . II-1

2.1.1.1 Quality Factors 11-3
2.1.1.2 Criteria 11-5
2.1.1.3 Metrics.I-S

2.2 GE PROCEDURE FOR APPLYING METRICS II-10
2.2.1 Identify Software Quality

Requirements...... .. II-10
2.2.2 Applying Software Quality"

Measurements...- 13
2.3 INTERPRETATION OF GE METRICS . . . 11-13

III METHODOLOGY FOR TRANSFORMING THE GE METRICS
INTO THE SOFTWARE METRICS HADBOOK

3.1 OBJECTIVES 111-1
3.2 EVALUATION CIRTERIA FOR DEVELOPING

THE COMPUTER SYSTEM ACQUISITION
HANDBOOK O................I1-5

iii

Section Title Page

3.2.1 Period 111-6
3.2.2 Importance 111-6
3.2.3 Training 111-7

3.3 THE DATA ELEMENTS FROM THE GE
WORKSHEETSI....... 111-7

3.4 METHODOLOGY FOR EVALUATING DATA
ELEMENTS SUITABLE FOR THE HANDBOOK III-7
3.4.1 Period Score 111-7
3.4.2 Importance Score 111-8
3.4.3 Training Score..... . IIl-11.

3.5 SELECTING DATA ELEMENTS SUITABLE
FOR THE HANDBOOK III-11
3.5.1 Candidate Selection

Methodologies III-11
3.5.2 Comparison of Selection

Methodologies...... . 111-13
3.5.3 Best Selection Methodology 111-13
3.5.4 Comparison of GE and SAI

Data Element Evaluations 111-13
3.5.5 Impact of Reducing Num-

ber of Data Elements on
Quality Factors111-17

3.5.6 Categories of Data Ele-meritsII... I1-17

3.6 MAPPING OF GE METRICS INTO SOFT-

WARE METRICS USED IN THIS HANDBOOK II-23

IV PILOT APPLICATION OF SOFTWARE METRICS HANDBOOK

4.1 • TRAINING PHASE OF SOFTWARE METRICS
.HANDBOOK #.. .. rv-1

4.2 APPLICATION3OF SOFTWARE METRICS HAND-
BOOK TO A C SYSTEM IV-1

4.3 ISSUES AND SOLUTIONS IV-1

V CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER ACTION

5.1 ALTERNATIVE USES FOR SOFTWARE MAT-
RICS V-I
5.1.1 Software Metrics Used to

Measure Software Revisions V-1
5.1.2 Software Metrics Used as a

Review Tool V-2
5.1.3 Software Metrics Used to

Perform Retrospective
Analyses V-2

S.1.4 Software Metrics Used as
Performance Incentives . . V-3

S.1.S Software Metrics Used to
Develop Guidelines V-3

iv

...I, -I I II i '

Section Title Page

5.1.6 Software Metrics Used for
Control and Visibility . .. V-3

5.2 MANAGEMENT CONCERNS. V-4
5.3 CONCLUSIONS AND RECOMMENDATIONS . .. V-5

Appendix A List of Works Cited

£ol#il

VLV

0.;do

|I

SECTION I

INTRODUCTION AND BACKGROUND

1.1 NEED FOR SQA MEASUREMENTS

The Air Force perceives computer systems as an increasing

cost which must be harnessed and controlled. Computer systems

are rapidly increasing in importance as components of manage-

ment and defense systems. The Air Force is responsible for

the selection, development and maintenance of numerous computer

systems. Due to a lack of quantifiable criteria to judge the

quality of a computer system during its life cycle and to other

causes, the acquisition of computer systems has resulted in cost-

ly problems for the Air Force. These problems cften are not ob-

served until after the system has been developed, and may include

the following:

* Failure to meet user specifications,

0 Lack of reliability in performing intended functions,

* Inefficient use of computing resource and code,

* Failure to meet access control requirement,

* Difficult to use,

* Difficult to modify or upgrade,

* Difficult to transfer from one system environment to

another,

* Unable to be used in other applications, and

* Unable to interface with other systems.

Methods have been developed to prevent or lessen the sever-

ity of these problems. These methods include training programs

for software acquisition personnel, documentation of past

I-1

-~"------.-~-.--- ---- --- --- ---- --- -.
S€

experience, and procedures and tools to assure the quality of

developed systems. Guidelines and procedures have been provided

in a series of software acquisition management guidebooks. These

guidebooks cover configuration management, computer program

development specification, documentation requirements, verifica-

tion, validation and certification, software maintenance, soft-

ware quality assurance, software cost estimation and measure-

ment, software development and maintenance facilities, and life

cycle events.

These guidebooks provide qualitative methods for the assess-

ment of software development. Quantitative measures, or metrics,

have recently been developed as a tool to quantitatively measure

the quality of software. These metrics should provide an addition-

al means to assess the quality of the software, and to reduce or

prevent the problems listed above.

As a part of its software quality program, the Air Force

Systems Command (AFSC), Electronic Systems Division (ESD) has

contracted Systems Architects, Inc. (SAI) to develop a "Computer

Systems. Acquisition Metrics Handbook". This Handbook will en-

able ESD personnel to apply software quality metrics to software

development efforts. The purpose of this theoretical supplement

is to demonstrate the work done producing this "Computer Systems

Acquisition Metrics Handbook".

The research in the initial phase of this project indicated

that of the work that had been done in the area of software metrics,

the metrics developed by McCall at General Electric (GE) (RADC-TR-

80-109, Vol. I & II) were most applicable to ESD's environment.

These metrics were developed in the Department of Defense (DoD)

environment. These metrics were adapted to form the theoretical

basis for the development of this "Handbook".

I-2

A W

1.2 SOFTWARE METRICS LITERATURE REVIEW

In order to provide a comprehensive review of software metrics
and related areas of research, SAI conducted a literature review.

This review met three objectives: (1) Outline state-of-the-art

in software metric efforts; (2) Provide a scope of the problems

involved in software development and acquisition; and (3) Determine
what solutions have been found to these problems for incorporation

into this effort where relevant.

The literature review identified a number of factors contri-

buting to the poor development of software, and some theories and

approaches developed to exert better control and produce more re-

liable software. The areas of current literature investigated in-

cluded metrics, software reliability, software management, software

quality tools and techniques, and software cost estimation.

Software metrics are measures ,used to evaluate the

quality of software over its life cycle. It is currently an in-
fant discipline, and there are a number of conflicting opinions

as to what and how software characteristics should be measured.

Some of the theories and methods that were found for measuring

software characteristics include the following:

* Boehm, Brown, and Lipow's Quality Characteristics Tree,

* Gilb's Software Metrics,

* Halstead's Software Science,

" McCall's Metrics,

* McCabe's Complexity Measure,

" Measures of Comprehensibility

1-3

These metrics were in the validation stage when the early

efforts toward developing the "handbook'" took place. The major

directions in metrics research was: (1) The identification of

metrics related to a specific software attribute; and (2) The

use of metrics to evaluate programmer performance or human factors

involved in software developments. Areas of future research are

software management and automated measurement. Considerable bene-

fits can are are being realized from this research.

Software reliability has been defined as the degree to which

a software system satisfies its requirements, and delivers usable

services. There are several different types of software relia-

bility models, operational reliability models, and user-oriented

models. Although a standard cookbook approach for widespread

application of these models cannot now be provided, software re-

liability measurement have clearly progressed beyond the pure

theory stage. The tools that have been developed can be useful

and valuable in software development efforts.

Software management includes the estimation, negotiation,

and control of a technology which is very complex and which is

subject to a high degree of modification. Typically, the fol-

lowing four problem areas are encountered:

(1) Obtaining satisfactory software requirements,

(2) Improving the art of software cost estimating,

(3) Achieving significant productivity improvements, and

(4) Maintaining control and visibility of software

developments.

1-4

* .**-~ -

Obtaining satisfactory software requirement specification

is the first obstacle to the success of software projects. Eng-

lish language statements are currently the major form of speci-

fication. Other forms of specification (including automated tools

and simulation) have been advocated. Productivity can be im-

proved by providing software designers with automated tools.

The key to effective control is to break up the development of

software into a number of small measurable steps, and then to

audit the satisfactory completion of those steps. Techniques

necessary for controlling the development of large software

based systems include: stepwise refinement, requirements

traceability, process design, incremental development, structured

development, software design language, unit development folders,

quality assurance/configuration management, and life cycle main-

tenance.

There is a wide range of tools and techniques for improving

software quality over the life cycle. Specific tools and tech-

niques have been developed for software design, implementation,

checkout, and maintenance. Some of the tools and techniques have

been applied to software development projects economically and

with successful results, but many are still in Research and

Development.

Software cost estimating is considered an imprecise art. At

the start of this project the best single indicator of software

development cost was the number of machine instructions. Using

this number has yielded high amounts of estimating errors. A

number of qualitative factors are needed to provide a better pic-

ture of the true potential cost. Two cost estimation models which

have been developed include the RCA PRICE-S and the TRW SCEP.

Both of these models have been applied to a number of software

development projects.

I-5

.*.-
* I

Progress in the advancement of software technology and tools

over the past decade has been rapid, but developments in software

have not kept pace with the potential for development provided by

hardware innovations. The tools and techniques described above

require further validationand refinement in order to provide for

the development of software that is economical, reliable, and

functional.

1.3 CONCEPTS AND CLASSIFICATION OF SOFTWARE METRICS

1.3.1 Concepts of Software Metrics

Software metrics is currently an infant discipline,

and there are conflicting opinions as to what and how soft-

ware characteristics should be measured (SHNB80)*. R.

Rubey and R. Hartwick first introduced the concept cf soft-

ware metrics in 1968. Since that time, the research in

software metrics has grown to include (MCCJ80c)*:

" The use of metrics as an aid in testing and

maintaining software,

* The psychological and programmer performance

implications,

* The use of metrics as software acceptance

criteria in a formal acquisition environment,

and

* The use of metrics in providing a quality

assurance tool/technique.

The major proposed methods for measuring computer

program quality are described in the following subsections.

These proposed methods for software metrics include:

*Key to reference listed in Appendix A.

1-6

(1) Boehm, Brown and Lipow's Quality Characteristics

Tree,

(2) Gilb's Software Metrics,

(3) Halstead's Software Science,

(4) McCall's Metrics,

(5) McCabe's Complexity Measure, and

(6) Measures of Comprehensibility.

1.3.1.1 Boehm, Brown and Lipow's Quality
Characteristic Tree

In determining what characteristics should be

measured in .order to determine software quality, Boehm,

Brown and Lipow (1978) defined a hierarchical software

quality characteristic tree. In the quality character-

istic tree (Figure I-1), the arrow implies that the

quality to the left of the arrow must also include the

quality/qualities to the right of the arrow. Thus, a

program that is maintainable must also be testable,

understandable, and modifiable (SHNB80). The higher

levels of the system reflect the.uses of the software

quality evaluation in terms of:

(1) The current behavior of the software,

(2) The ease of changing the software, and

(3) The ease of converting or interfacing

the software system (CURB80b).

The lowest level characteristics (right-mostI in Figure I-1) are "primitives", or the most basic

characteristics. These lowest level characteristics
may be combined into the medium characteristics and
are recommended as software metrics for both the

1-7

- ---

I

2! Ii:~ ,~k

I
I

C-,
b-4
i-I
U,
-4

'-I j.4
a ~

= 1k! ~
it III ii - ,...-4

0

if I£

j

1-8

-urn .~

S

"primitives" and the higher level characteristics.

The detailed and complex scheme proposed by Boehm,
Brown and Lipow is based on practical experience

and is appealing to programmers. However, Boehm,

Brown and Lipow offer no clear cut demonstration of

its effectiveness, reliability, or applicability in

other environments. The lengthy list of issues acts

as a checklist for reviewing a program rather than

offering guidance in program construction. Such

checklists can be useful, but they tend to grow long
and cumbersome, match the needs of a specific organiza-

tion, and become language/system specific [SHNB80].

1.3.1.2 Gilb's Software Metrics

Gilb (1977) presents a set of basic software

metrics, making no claim as to their completeness. He

emphasizes that each software application requires its

own concepts and that his text is intended to provide

basic concepts on which the user can build. Gilb builds

a strong and convincing case for a precise measurement

based on the history of the physical sciences. Gilb's

major categories of metrics include: reliability metrics,

flexibility metrics, structure metrics, performance met-
rics, resource metrics, and diverse metrics [GILB77].

Each of these categories is broken down into lists of

subcategories. Many-of Gilb's metrics are difficult to

obtain. Even where values can be computed, there exists

no sense of the range of good values. The lack of in-

dependence of the metrics adds to the confusing complexity

and makes it difficult for programmers to predict the ef-

fect of a program change on a group of metrics [SHNB8O).
1.3.1.3 Halstead's Software Science

Halstead (1977) approaches the human prepara-

tion of computer programs by using methods and princi-

ples of classical experimental science.

1-9

i t i i _

This software science is based on counting the opera-

tors and operands of any program. This is a difficult

count to make for large programs unless automated. An

operator is defined as the what-to-do portion of a pro-

gram instruction, and an operand is a peice of data upon

which an operation is performed. From these, Halstead

derives mathematical formulas to determine estimates of:

• Program size,

* Programming time,

* The initial number of errors to be expected

in a program, and

* The number of errors delivered in a program.

Using these formulas, Halstead has derived a

program modularization scheme. Programs modularized ac-

cording to this scheme, says Halstead, will be easy to

write, debug, comprehend, and maintain. Halstead's soft-

ware science is appealing, the experimental evidence is

convincing, and its psychological foundations are sturdy.

However, Halstead's approach is not complete since it

ignores specific issues such as complexity and choice of

algorithms, and general issues such as portability, flexi-

bility, and efficiency [SHNB80]. Halstead's theory has

been the subject of considerable research, and results

indicate that Halstead's metrics are in fact good indi-

cators of the number of bugs in a program, programming

time, and debugging time [CURB80b].

1.3.1.4 McCall's Metrics

Research sponsored by the U.S. Air Force led to

McCall's software metrics model. This model contains a

comprehensive hierarchical definition of software quality

(see Figure 1-2). At the highest level, quality factors

are defined that are appropriate for software acquisition

managers to use as an aid in specifying quality objectives

for their software systems. These high level factors are

I-10

e

I.-

4
2a
a MI I

I I a
o =0 4

a. i

I-U.

0
0

4u £
U-

I
z 4
MI
* a

I- MI I
I z

MI MI

ao 0
* 4

MI MI
o £ U-

z4 4 Z

U
* a I

I Ir.L: -~~-4a~ <

U

I-

0

I-Il

I

more software-directed until specific metrics are pro-

posed that relate to the factors [CAVJ78].

The application of the framework for McCall's

metrics has three impacts on quality assurance activities

during large-scale software development. These impacts

[MCCJ80v] are:

(1) The framework provides a mechanism for

a program manager to identify what qual-

ities are importat.

(2) The framework provides a means of quan-

titatively assessing how well the devel-

opment is progressing relative to the qual-

ity goals established.

(3) The framework provides for more interaction

by the quality assurance personnel through-

out the development effort.

McCall's metrics have been documented in the

RADC Software Quality Measurement Manual. On-going work

involves automating the function of data collection for

the metrics [MCCJ80].

1.3.1.5 McCabe's Complexity Measure

McCabe asserts that half of software develop-

ment is spent in testing, and most of the money spent

on software systems is used for maintaining the system.

Therefore, what is needed is a mathematical technique

that provides a quantitative basis for modularization

and identifies software modules which will be difficult

to test or to maintain [MCCT76].

McCabe (1976) describes a complexity measure and

illustrates its use in managing, testing, and controlling

program complexity. He defines this complexity measure

as the number of paths through a program. McCabets theory

1-12

i i i IIII ... rea -'
±

.

assumes that the complexity of a program is not dependent
on its size and that the complexity of a program depends
only on the structure of the decisions in the program.
McCabe says that merely restricting the size of a program
module does not ensure good modularization and points out
that it is possible for a fifty-line module to have 33.5
million distinct control paths. His approach is to mea-
sure and control the number of paths through a program.

McCabe's complexity measure is a helpful tool

in preparing test data and may provide useful informa-
tion related to program complexity. However, his metric
ignores the choice of algorithms and how data is struc-
tured, and avoids important considerations such as port-
ability, flexibility, and efficiency [SHNB80].

1.3.1.6 Measures of Comprehensibility

Comprehensibility is the ease with which a pro-
grammer can understand a program. Sheppard, Borst and
Love (1978) conducted an experiment to evaluate the ef-
fect of structure on a programmer's understanding of a
computer program, and the use of Halstead's and NcCabe'.s
metrics on the prediction of program understanding.

In the experiment, professional programmers were
given ten minutes to study a short program and five min-
utes to reconstruct an equivalent program. The experi-
mental results indicated that the least structured pro-

gram was the most difficult to reconstruct and a partial-
ly structured program was the easiest. McCabe's complex-

ity measure was found to be a good predictor of program
length, as was Halstead's E metric (the amount of effort

required to generate a program).

Schneiderman (1978) has proposed that every
program module should meet a 90-10 rule: "A competent
programmer should be able to reconstruct 90 percent of

1-13

--

U I I a

the program after 10 minutes of study." This concept,

which is based on several memorization/reconstruction

experiments, needs testing and validation [SHNB80].

1.3.1.7 Summary

Two major directions can be identified in the

area of software metric research. In one direction,

researchers are identifying metrics related to a specific

attribute of a software product's quality. The best

examples of this type of metric are the complexity

measures that have been derived. The other direction has

been to use metrics for the evaluation of programmer per-

formance or the human factors involved in software devel-

opments. Research efforts will continue in the area of

the psychological aspects of software development and in

specialized studies of various metrics for each quality

factor. f
Other efforts will continue in the area of providing

automated measurement, which is required to make the

application of metrics economical and consistently reliable.

Another area that future research will attach is that of

software management, where metrics will provide a feed-

back mechanism for viewing software development as a

controlled process. Considerable benefits can and are

currently being realized from the research.

1-14

_ _.._ _ _|

SECTION II

GE METRIC EFFORT

2.1 SCOPE OF GE METRICS

Research sponsored by the U.S. Air Force Electronics Sys-

tems Division (ESD) and Rome Air Development Center (RADC) led

to the development of a concept of software quality by the Gen-
eral Electric Company (GE). One of the objectives of this effort

was to provide Air Force system acquisition managers with a mechan-

ism to quantitatively specify and measure the desired level of qual-

ity in a software product. McCall at GE developed a system of

measures, or metrics, for the quantitative specification and

measurement of software quality. The concepts, definitions, and

classification of these metrics are provided in the subsections

which follow.

2.1.1 Framework

The software metrics framework is a hierarchical

structure. Management-oriented Quality Factors at the

highest level are important to software acquisition managers

and used as an aid in specifying quality objectives for their

software systems. At the next level are Criteria which are

software-oriented attributes used to describe characteris-

tics of the software. At the next level are Metrics which

provide a measurement of the software Criteria. This hier-

archical framework is presented in Figure If-1.

The measurements are to be taken during the development

effort. These measurements are not post-implementation assess-

ments of software quality. They are not test-like measure-

ments. Their purpose is to provide an indication of the pro-

gress toward a desired level of quality during the develop-

ment. The Criteria, established for each software Quality

Factor, represent attributes which can be measured during the

software development. A detailed description of each of the

levels in this framework is provided in the following subsections.

II-i1

FAC .OR- MANAGEMENT-ORIENTED
VIEW OF PRODUCT QUALITY

- SOFTWARE-ORIENTED
ATTRIBUTES WHICH
PROVIDE QUAUTY

-QUANTITATIVE MEASURES
OF THOSE ATTRIBUTES

FIGURE II-1

METRICS HIERARCHICAL FRAMEWORK

11-2

11-2

2.1.1.1 Quality Factors

Quality Facotrs are management oriented

software qualities used to identify what qualities
are desired in the software product being developed.

This metric system uses the following eleven software

Quality Factors.

(1) Correctness - the extent to which a

program satisfies its specifications

and fulfills the user's mission

objectives,

(2) Reliability - the extent to which a

program can be expected to perform its

intended function with required
precision,

(3) Efficiency - the amount of computing

resources and code required by a pro-

gram to perform a function,

(4) Integrity - the, extent to which access

to software or data by unauthorized

persons can be controlled,

(5) Usability - the effort required to

learn, operate, prepare input, and

interpret output of a program,

(6) Maintainability - the effort required
to locate and fix an error in an oper-

ational program,

(7) Testability - the effort required to
test a program to insure it performs

its intended function,

11-3

I

(8) Flexibility the effort required to
modify an operational program,

(9) Portability - the effort required to

transfer a program from one hardware

configuration and/or software system

environment to another.

(10) Reusability - the extent to which a

program can be used in other applica-

tions (related to the packaging and

scope of the function that programs

perform), and

(11) Interoperability - the effort required

to couple one system with another.

These Factors provide a mechanism to spec-

ify the basic attributes of a system over its life

cycle. Thus, if a system is being developed in an

environment where there is a high rate of technolog-

ical breakthroughs in hardware design, portability

should be given a primary significance. If the ex-

pected life cycle of the system is long, then main-

tainability becomes a cost-critical consideration.

If the system is an experimental system where the

software specifications will have a high rate of

change,. flexibility in the software product is highly

desirable. If the functions of the system are ex-

pected to be required for a long time, while the

system itself may change considerably from time to

time, then reusability is highly significant for those

modules which implement the major functions of the

system. The quality of interoperability becomes ex-

tremely important for systems required to interface

with others via communications networks.

11-4

--- - - " -

2.1.1.2 Criteria

Software Criteria are attributes of the

software and further define the hierarchical struc-

ture of GE's metrics. Each Factor is defined by a

set of Criteria; Criteria which affect more than one

Factor help to describe the relationships between

Factors. The software Criteria are listed and de-

fined in Table II-A. The relationship between Cri-

teria and Factors is shown in Table II-B.

2.1.1.3 Metrics

The actual measurement of software quality

is accomplished by applying Software Metrics to the

documentation and source code produced during a soft-

ware development effort. To determine the value of

a metric questions are asked that are answerable

numerically or by Yes or No response. The Yes or

No responses are translated to 1 and 0 respectively

so that in effect all answers are numerical. Metrics

are established in a one to one relationship with

criteria to provide a measure of the software Criteria.

Which in turn combine through algorithms to Quantify

the Quality Factor.

The metrics are organized using five phases

of software development: (1) Requirements Analysis

(2) Preliminary Design, (3) Detail Design, (4) Imple-

mentation, and (S) Test and Integration. See Figure

11-2.

11-5

CRITERIA DEFINITION

Traceability Those attributes of the software that pro-
vide a thread from the requirements to the
implementation, with respect to the speci-
fic development and operational environment.

Completeness Those attributes of the software that pro-
vide full implementation of the functions
required.

Consistency Those attributes of the software that pro-
vide uniform design and implementation
techniques and notation.

Accuracy Those attributes of the software that pro-
vide the required precision in calculations
and outputs.

Error Tolerance Those attributes of the software that pro-
vide continuity of operation under non-
nominal conditions.

Simplicity Those attributes of the software that pro-
vide implementation of functions in the
most understandable manner. (Usually
avoidance of practices which increase
complexity.)

Modularity Those attributes of the software that pro-
vide a structure of highly independent
modules.

Generality Those attributes of the software that pro-
vide breadth to the functions performed.

TABLE II-A

SOFTWARE CRITERIA

11-6

...... -.. .. Ko

mi

CRITERIA DEFINITION

Expandability Those attributes of the software that pro-
vide for expansion of data storage require-
ments or computational functions.

Instrumentation Those attributes of the software that pro-
vide for the measurement of usage or iden-
tification of errors.

Self- Those attributes of the software that
Descriptiveness provide explanation of the implementation

of a function.

Execution Those attributes of the software that

Efficiency provide for minimum processing time.

Storage Those attributes of the software that
Efficiency provide for minimum storage requirements

during operation.

Access Control Those attributes of the software that pro-
vide for control of the access of software
and data.

Access Audit Those attributes of the software that pro-
vide for an audit of the access of software
and data.

Operability Those attributes of the software that
determine operation and procedures con-
cerned with the operation of the software.

TABLE II-A (continued)

SOFTWARE CRITERIA

11-7

-o *..-

_ • i i _ . ., , •]

CRITERIA DEFINITION

Training Those attributes of the software that pro-
vide transition from current operation or
initial familiarization.

Communicativeness Those attributes of the software that pro-
vide useful inputs and outputs which can be
assimilated.

Software System Those attributes of the software that
Independence determine its dependency on the software

environment (operating systems, utilities,
input/output routines, etc.).

Machine Those attributes of the software that
Independence determine its dependency on the hardware

system.

Communications Those attributes of the software that
Commonality provide the use of standard protocols and

interface routines.

Data Commonality Those attributes of the software that pro-
vide the use of standard data represen-
tations.

Conciseness Those attributes of the software that pro-
vide for implementation of a function with
a minimum amount of code.

TABLE II-A (continued)

SOFTWARE CRITERIA

1 1-

i*1

FACTOR CRITERIA

Operability

Usability Training

Communicativeness

Integrity Access Control

Access Audit

Efficiency Storage Efficiency

Execution Efficiency

Correctness Traceability

Completeness

Reliability Accuracy

Error Tolerance

Maintainability Consistency

Simplicity

Testability Conciseness

Instrumentation

Flexibility Expandability

Generality

Reusability Self-Descriptiveness

Modularity

Portability Machine Independence

Software System Independence

Interoperability Communications Commonality

Data Commonality

TABLE II-B

RELATIONSHIP OF FACTORS AND CRITERIA

11-9

, =, . . m S

The metrics can be applied either at the system level or

subsystem level if the subsystem is viewed as the "System".

At the system level, the metrics can be utilized to obtain

an overall measure of how the system is progressing with

respect to a-particular Quality Factor. At the subsystem

level, the metrics can be used to identify problems in
a particular subsystem so that corrective actions or an

emphasis can be applied to that subsystem. Appendix B of

GE's Software Quality Metrics Enhancements (RADC-TR-80-

109) provide a description and explanation of the use

of GE's metrics.

2.2 GE PROCEDURE FOR APPLYING METRICS

The procedure used to apply GE's metrics involves three
steps: (1) Identify software quality requirements, (2) Apply

software quality measurements, and (3) Assess the quality of the

software product. The procedures involved in these steps are

described in the following subsections.

2.2.1 Identify Software Quality Requirements

Activities in identifying software quality require-

ments include identifying important Quality Factors, iden-
tifying critical software attributes, and establishing
quantifiable goals. To identify software quality require-

ments, a survey form is used to solicit responses from the

system's decision makers (acquisition manager, user/customer,

development manager, and quality assurance manager).

This survey form, shown in Figure 11-3, is used to
gather information with respect to the basic characteristics

of the application. This identifies the rank of Quality
Factors, and documents the rationale for the decisions made

in selecting the Quality Factors.

II-10

.1 -o. _.~

NI g ITs

SPEC

Nmic ImIINN
SPE

(OT)

PUNff (WILALS

PC

(WILT 11) V535T

Nmt

No=RI NITRC WIIIET

lUST NITRIC VWSAI NTICWal
0 26 "mit alo

FIGURE 11-2

TIMING OF THE APPLICATION OF THlE METRIC WORKSILzITS

1. The 11 quality factors listed below have been isolated ft=m the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please Indicate whether
you consider each factor to be Very Important)(VI), Important (1),
Sommwhat Important (SI). or Not Important (NI) as design goals in the
system you are currently working on.

CWAW WI:~ in whic a moesatisfia Its
- spo~ations 450-1 f thiel wls

- MLZTYL Exnnt w eAla piop m gelooso
to peFem Its m~Im-II ttso wit

- M01 IMicc memet of -uptIng ,qos mi ad
rquired by a pwm t PM o a fmnt a.-

Eutmf ~to w dift aem a noftm or dft
- by iuthorluhd porn =-b onmvsleL

- UVAMIL Effort, reouirm to las, GPM"a. ~pro'
loput, n Wi toupso OI*'-" of a prem.

- WMIDUIII1 Effort imquivog S leots W flx a
in. SM mst oftl Pre.

- 1~I3L1TYEffort reod to tot a puoguo a Inbore
It PMiI ft it onded mt fint.

- MIULMT Ef9trt required to mify a opoetiol

- P0871BM Effort required In tol a prgre fro
- hu'~r ooflputio. soor "ofume

tyoteovimwt IS 4001o.
*MMLMI Eutn to Miuih a poo m be wedi In oter

aplismon - related to P~otand
loops of the inoiom ant prapu Perfor.

2. What type(s) of application are you currently involved in?

3. Are you currently in:
________1. Develomnt phase
___________2. Opeations/Maintanance phas

4.' Pleas indicate the title which mst closely describes your positios
_________ I P "Iram Ibmager
__________2. Technical Consultant
_________3. System Analyst
___________4. 0fth. (pleas specify)_______

FIGURE 11-3

SOFTWARE QUALITY REQUIREMENTS SURVEY FORM

11-12

The degree of Relationship between software Quality Factors

is shown in Figure 11-4. This is used to "trade-off" Quality

Factors selection so that Quality Factors with a low degree

of relationships are not expected to exist simultaneously

within a system.

The next level of identifyinQ the quality measurements

is to proreed from the management-oriented Quality Factors

to the software-oriented Criteria. The Criteria are re-

lated to the various factors by definition and provide a more

detailed specification of the quality requirements.

After the critical quality factors have been identi-

fied, specific performance levels or ratings required for

each factor should be specified. The specific metrics which

will be applied to the various software products produced

during the development should be specified, and specific

minimum values for particular metrics may be specified in

addition to the ratings.

2.2.2 Apply Software Quality Measurements

The vehicle for applying the software quality measure-

ments are the metric worksheets contained in GE's Software 5

Quality Metrics Manual (RADC-TR-80-109). The metric work-

sheets are applied to the available system documentation or

source code and the measurements are translated into metric

scores. The application of the metric worksheets follow the

phased development of the software. The timing of the ap-

plication of the metric worksheets is shown in Figure 11-2.

2.3 INTERPRETATION OF GE METRICS

The benefits of applying the software quality metrics are

realized when the information gathered from the application of the

metric worksheets is analyzed. There are three levels at which

analyses can be performed: (1) Inspector's Assessment, (2) Sensi-

tivity Analysis, and (3) Use of Normalization Function. In the

Inspector's Assessment, an inspector, using the worksheets, asks

11-13

Pfak~ u'.fqt1rI wt1rfer

FA uru mCMI sd t lslw
o .NlAw

31 bw~aupa'u1IMm =i

FIUE0-

REAINSISBEWE OFWR QAIY ATR

Im11-14

-~Q77777Z~U

the same questions and takes the same counts for each module's

source code or design document that is reviewed. Based on this

consistent evaluation, a subjective comparison of the products

can be made.

The Sensitivity Analysis uses the results of the calcula-

tions from the metric worksheets to form a matrix of measurements.

The matrix represents a profile of all the modules in the system

with respect to a number of characteristics measured by the

metrics, and allows a number of analyses to be performed. The

last level of quality assessment involves using normalization

functions to predict the quality of the software in quantitative

terms.

The majority of the coefficients required to perform the

sensitivity analysis are not available at this time due to their

empirical nature. More research and development must be done in

this area to provide full information at all three levels of
interpretation.

4

111

U- - i------

• im In

SECTION III

METHODOLOGY FOR TRANSFORMING THE GE METRICS

INTO THE SOFTWARE METRICS HANDBOOK

3.1 OBJECTIVES

The objectives of this project were to develop a standard set

of procedures that quantitatively specify and measure the quality

of a software system during its life cycle. The procedures were

written so that they could be learned during a one week training

program by students with.,limited software system development knowledge.

These procedures are documented in fhe form of a "Computer Systems

Acquisition Metrics Handbook" (sometimes referred to herein as the

"Handbook").

The development methodology employed by SAI in achieving

these objectives can be described at its highest level in five

steps.

Step 1. Gain complete knowledge of the computer metrics,

technology developed by General Electric in April

1980 (RADC-TR-80-109, Vol. I & II).

Step 2. Employ a stepwise refinement to decompose the GE

metric system to successively increasing levels

of detail until all fundamental units, the "Data

Elements", are described and understood.

Step 3. Evaluate each "Data Element" to identify those

suitable for the "Handbook".

Step 4. Rebuild the system from the bottom up using only

those "Data Elements" selected in Step 3.

Steo S. Present the metric system in the form of a

"Practical Handbook".

As illustrated in Figure III-1, the "Framework of the Metrics

Handbook" has the following five components: (1) General Instruc-

tions, (2) Quality Factor Selection Instructions, (3) Data

Element Dictionary, (4) Quality Factor Modules (eleven), and

III11-i

(MOF

LIEM

BVAUL&XO~ gpi3A11G

FRAMEWRK OF HE MERICSAHNDBOO

111By

WA MA LIS

- , ,. -.- ..

(5) Sets of Data Collection, Metrics, Evaluation Worksheets,

Criteria for metric and Factor level organized according to the

life cycle model. The procedure for applying the "Handbook" is

hierarchical and can be described at its highest level in four steps;

Step 1. Decide whether the handbook is suitable for the

system under development based on the "General

Instructions".

Step 2. Select the Quality Factors relevant to ,the

system based on the "Quality Factor Selection

Instructions".

Step 3. Obtain only those Quality Factor Modules that

correspond to the Quality Factors selected in

Step 2.

Step 4. Apply the worksheets repeatedly over the system

life cycle as described in the "Quality Factor

Module Instructions".

This framework of procedure provides a software quality measure-

ment system which is quantitative in value, yet simple enough

to be learned in one week by a student with limited software

development background.

A sample worksheet from the Handbook is included on the

following page. In the upper right hand corner of each work-

sheet is the Form Code. Each worksheet is assigned a Form

Code according to the Form Code Key below in Table III-A.

When the worksheets are organized according to Form Code,

the eleven "Quality Factor Modules" are formed.

I1- 3

7 _ _... .

1.1 ~ ~ ~ ~ Fr Ise: 4 irr.ia C3~Poie
LMbic ideiiie all: OMdu CS

I. DATAI MLLCrICN~4 of ScoresC

1.vi 1rIs aarchca cat pmroidae?

(l-1O Yes (9I a a e No bl ioeala

IV .0~E1' Module Jnea~ e(6

MWA 2. Is_______ theOT IT:____________ f t

soume ofth iao te4 esi

natio. of. th upt

MODULE PHASE LEVEL . SEQUENCE

SI RAC.2

INTEGRITY REQ-ANA. CRITERIASECOND PAGE OF SET

MODULE PHASE LEVEL

Co - CORRECTNESS RA - REQUIREMENTS ANALYSIS M - METRIC
Re - RELIABILITY PD - PRELIMINARY DESIGN C - CRITERIA
Ef - EFFICIENCY DD - DETAIL DESIGN -F - FACTOR
It - INTEGRITY IM - IMPLEMENTATION
Us - USABILITY
4a - MAINTAINABILITY
Fx FLEXIBILITY
Te - TESTABILITY
Po PORTABILITY
Ru REUSABILITY
Ip - INTEROPERABILITY

TABLE III-A

FORM CODE KEY

The following development methodology described in the balance

of this section expands on the evaluation of each "Data Element"

in the GE metric system to identify those suitable for the "Computer

System Acquisition Metrics Handbook". Those selected are included

in the "Worksheets" of the eleven "Quality Factor Modules".

3.2 EVALUATION CRITERIA FOR DEVELOPING THE COMPUTER SYSTEM
ACQUISITION HANDBOOK

The SAI technical staff established evaluation criteria for

selecting Data Elements to be used in the handbook. This was

done so only suitable Data Elements would be included while ob-

scure or difficult Data Elements would be excluded. The three

criteria chosen for this purpose were (1) Period, (2) Training,

and (3) Importance. The degree of significance of each data ele-

ment was evaluated against each of the three criteria and the

resulting score plotted in a three-dimensional space with the
three criteria as unit vectors. Figure 111-2 illustrates this

concept. The three criteria were selected for their orthogonality

and significance relative to the objective of the "Handbook". A

three-dimensional space was chosen as a model to preserve the con-

cept of orthogonality.

III-,.

3.2.1 Period

The evaluation criterion Period is based on the amount

of time in minutes it takes for the person making the measure-

ments to acquire information asked for in the Data Element

3.2.2 Importance

The evaluation criterion Importance is based on the

number of times a Dat9 El ement occurs in the total number of

measureme-ts and how effective it is in the related MRetric

algorithims.

PERIOD

z

//

/

/

t DIWOIRTANCE
xA

! I

I /

i sI

TRAININGN~

FIGUR 111.-2

THREE DIMENSIONAL EVALUATION SPACE

IM-6

MODULE PHASE LEVEL SEQUENCE

ItRA2

INTEGRITY REQ-ANA. CRITERIA SECOND PAGE OF SET

MODULE PHASE LEVEL

Co - CORRECTNESS RA - REQUIREMENTS ANALYSIS M - METRIC
Re - RELIABILITY PD - PRELIMINARY DESIGN C a CRITERIA
Ef - EFFICIENCY DD - DETAIL DESIGN .F a FACTOR
It - INTEGRITY IM - IMPLEMENTATION
Us - USABILITY
1a MAINTAINABILITY
Fx - FLEXIBILITY
Te -TESTABILITY
Po - PORTABILITY
Ru - REUSABILITY
Ip - INTEROPERABILITY

TABLE III-A

FORM CODE KEY

The following development methodology described in the balance

of this section expands on the evaluation of each "Data Element"

in the GE metric system to identify those suitable for the "Computer

System Acquisition Metrics Handbook". Those selected are included
in the "Worksheets" of the eleven "Quality Factor Modules".

3.2 EVALUATION CRITERIA FOR DEVELOPING THE COMPUTER SYSTEM
ACQUISITION HANDBOOK

The SAI technical staff established evaluation criteria for
selecting Data Elements to be used in the handbook. This was

done so only suitable Data Elements would be included while ob-
scure or difficult -Data Elements would be excluded. The three
criteria chosen for this purpose were (1) Period, (2) Training,
and (3) Importance. The degree of significance of each data ele-

ment was evaluated against each of the three criteria and the
resulting score plotted in a three-dimensional space with the

three criteria as unit vectors. Figure 111-2 illustrates this

concept. The three criteria were selected for their orthogonality

and significance relative to the objective of the "Handbook". A

three-dimensional space was chosen as a model to preserve the con-

cept of orthogonality.

III-5

7 T J.... .=..-:,.--= .-

3.2.1 Period

The evaluation criterion Period is based on the amount

of time in minutes it takes for the person making the measure-

ments to acquire information asked for in the Data Element

3.2.2 Importance

The evaluation criterion Importance is based on the

number of times a Datg Element occurs in the total number of

measurements and how effective it is in the related IRetric

algorithims.

PERIOD
z

/

/y

/WRA

- lop

.0

/

TWINI

FIUEI1-

THE DIESOAyVAUTO PC

IAZ

3.2.3 Training

The evaluation criterion Training is based on the

amount of time it takes for a person to learn and understand

a Data Element. This time estimate is based on the amount

of software experience anticipated in the target audience.

3.3 THE DATA ELEMENTS FROM THE GE WORKSHEETS

Data Elements are a set of very specific questions about

system/software characteristics over the development life cycle.

These questions are the main initial materials for the "Handbook:

development. SAI identified all the different Data Elements from

the four GE Metrics worksheets. The Data Elements can be found in

their original form on Metric Worksheets 1, 2a, 2b, and 3, pages 38

through 50 of RADC-TR-80-109, Vol. II, Final Technical Report,

April 1980, Software Quality Measured Manual.

3.4 METHODOLOGY FOR EVALUATING DATA ELEMENTS SUITABLE FOR THE

HANDBOOK

Once all the Data Elements were identified, the following

evaluation was applied. Each Data Element was measured according

to the three evaluation criteria described in Section 3.2, (Per-

iod, Importance, and Training). Each Data Element received a

Period score, an Importance score, and a Training score. Each

score ranges from one to five for each Data Element, and was

represented by a point in the three-dimensional space of Figure

111-3. Sections 3.4.1 through 3.4.3 describe the methodology that

was employed to assign Period, Importance, and Training scores for

the Data Elements.

3.4.1 Period Score

For the evaluation criterion Period, a Data Element was

scored according to the approximate time in minutes it would

take someone to acquire information asked for by that Data

Element. The score has a range of 1 to 5, each score corres-

ponding to a period of time in minutes. The less time that is

involved, the higher the score. Figure 111-4 illustrates

the Period algorithm.

111-7

: ,! . ii. . .. :. .. . _: ,- -

3.4.2 Importance Score

For the evaluation criterion Importance, a Data Ele-

ment was scored according to (1) the number of occurrences

in the metric system, and (2) its effectiveness.

PERIOD

z

/ S.

,4 S

3

2

2 3

2 2

I

II

/ 3S 2 /

/ -

I // -

S. - - - - -

x
TRAINING

FIGURE 111-3

THREE DIMENSIONAL EVALUATION SPACE

within the related metric algorithm. The Importance score is

acquired by adding the Occurrence and Effective scores. Figure

I1-3 illustrates the Importance Algorithm.

i 111-8

- . - ---- I~ I' II

SCORE

4

3-

2

1

0 ~ TIME
is 30 4S 60 75 90 10S 120 (MINUTES)

SCORE TIME (MINUTES)

s 0- is

4 15- 30

3 30- 60

2 60-120

1 OVER 120

FIGURE 111-4

PkLtIOD ALGORITHM

p *- I III I I I I

OCCU&RENCE
b

2 3

3 TIMES .

\1 32 4 4

I I I

IMPTIMESCE LEVE

I I I

1~CR TIM 12 EFC

LOW ! MEDIAN HIGH

1 2 3 4

IMPORTANCE LE VEL '

b): OCCURRENCE 1 TIME 2 TIMES 3 TIMES_

EFFECTIVE 3 3H211 2 1

SCORE 5 4 3 2

FIGURE I11-S

IMPORTANCE ALGORITHM

111-1

3.4.3 Training Score

For the evaluation criterion, Training, a Data

Element was scored according to: (1) The approximate

time in minutes it would take someone to understand a

Data Element (Explanation Time); and (2) The amount of

related experience that person had (Experience). A

short explanation time scored high and a low experience

scored high. The Training score is obtained by

adding the Explanation Time and Experience scores.

Figure III- 6 illustrates the Training Algorithm.

3.5 SELECTING DATA ELEMENTS SUITABLE FOR THE HANDBOOK

After assigning a score in each of the three dimensions

for each Data Element, the next step was to select a method

of combining the three scores to produce a composit score for

each Data Element. The purpose was to give each Data Element

a score based on all three evaluation criteria. This was

applied to all Data Elements. Once all the Data Elements

were represented by one score, a score distribution analysis

was conducted. This classified the Data Elements into three

categories: (1) Keep; (2) Reserve; and (3) Drop. The following

subsections describe this whole process in detail.

3.5.1 Candidate Selection Methodologies

SAi considered three composit scoring methods for

the Data Elements: (1) Sum; (2) Vector Length; and

(3) Product. The Data Element score in the Sum method

is derived from the sum of the Data Element's three

evaluation criteria scores. The Data Element score in

the Vector Length method is derived from the square root

of the sum of the squared criteria scores. The Data Element
k score in the Product method is derived from the product of

the criteria scores.

III-l

EXPERIENCE

d

NONE 2 S

I II

I I I

F) e • d"

II I

SOME 3_ - 4

STRONG 0
1 2

OVER 15-30 0-is LANTION MiE
MINUTE MINUTES MINUTES.

TRAINING LEVEL

d: EXPERIENCE STRONG SOM I NONE
SCOR.E 0 12

c: EXPLANATION OVER 30 15-30 0-15
TIE MINUTES MINUTES MINUTES

SCORE 1 2 3

F(c,d): EXPERINCE 2 2 1 2110 1 0 0
EXPLANATION TIMES 213 11213 112 11

SCORE S 4 3 2 1

FIGURE 111-6

TRAINING ALGORITHM

111-12

U

I III I I I I : -- : " : , ,, -,,, ,,

3.5.2 Comparison-of Selection Methodologies

SAI tested each candidate selection methodology V

on all the Data Elements to determine the most efficient

one for the Data Element selection process. Figure 111-7

illustrates examples of the three methods on one Data

Element that has a Period score of 5, an Importance

score of 4, and a Training score of 3.

3.5.3 Best Selection Methodology

SAI chose the Sum method as the best selection

methodology because the distribution of scores derived

from it was smooth and clear compared to the other methods.

Using the sum method as a base of scores for the Data

Elements, SAI classified each of the Data Elements into

a population of three classes: (1) Keep; (2) Reserve;

and (3) Drop. The mean and standard deviation of the

Data Element score distribution establishes the Keep,

Reserve, and Drop categories. Figure 111-8 illustrates

the distribution. Twenty Data Elements with low scores

were dropped; 33 with higher scores were put on Reserve,

while the rest were kept.

3.5.4 Comparison of GE and SAi Data Element Evaluations

The next step was to compare SAi and GE scoring

criteria to see if the ratings they gave for the Data

Elements were significantly different. Figures 111-9 and

III-10 show the scoring criteria utilized by GE and SAI.

Notice that the SAI criterion time is equivalent to GE's

Criterion Effort and SAI's Training'Requirement is equivalent

to GE's Skill Level.

111-13

PER.IOD
z

5

3

2

2 /114PORTANCM

3\

TRAINING

PRODUCT METHOD SUN METHOD

F(XIYZ) a u' Ppn (X,Y,Z) - X y Y*z

EXAMPLE: WHEN X-3,Y.4,Z.5, THEN EXAMPLE: W MEN X-3,y.4Z.S, THEN

P(X,YZ) a F(3,4,S) -3x4N5 -60 F(X,Y,Z) *F(3,4,S) *3445+S 12

VECTOR LENGTH METHOD

P(X,Y,Z) a (12 4Y + Z)

BXAMPLE: NHBJ4 X-3,Y-4Z5,TEN

P(X,YZ) - P(3.4,S) *- (32+ 42+ S2) 7.1

FIGURE 111-7

EXAMPLE OF THE SCORING OF A DATA ELEMENT
USING THREE DIFEERENT METHODOLOGIES

_ __ _ _ _ _ _ _ _ _

SCORE OF,
SUM 15 14 13 12 11 10 9 8 7 6 5 4 3

NUMBER 1 1 3 6 21 23125 13 23 1010 7 3

SCORE NUMBER

KEEP 15-8 93 64%

RESERVE 7-6 33 231

DROP 5-3 20 13%

NUMBER MEAN-8.48

STANDARD DEVIATION-i.9S

25

20

-5

Mein
10. ' one I

4i-Standard-OI
Deviatio n

S * I
RESERVE KEEP

I I

1 11 1 13 14 SCORE

FIGURE Ill-8

SCORE DISTRIBUTION FOR SUM METHCD

III-15

, ,___ __,__,__ __

SKILL

Eppal.

FIGURE 111- 9

GE SCORE CRITERIA

FIGURE III-10

SAI SCORE CRITERIA

111- 16

Figure III-l1 shows the comparison between the two

scoring methodologies. GE's Skill Level and Effort scores

range from 1 (lowest) to 5 (highest) while SAI's scores

are the exact opposite. Both GE and SAI scCre criteria

were used to measure the Data Elements. Table III-B

shows a score distribution, average score and results of

applying Skill Level measurements to the Data Elements.

Table III-C shows the same type of analysis but with the

Effort measurement, while Table III- Dshows both criteria

combined. The figures show that there was a slight difference

in the scoring results but not a significant one.

3.5.5 Impact of Reducing Number of Data Elements on

Quality Factors

It was important to assess what "dropping" data

would do at higher levels. Would dropping a set of Data

Elements be equivalent to eliminating a Quality Factor?

As Table III-E shows, dropping 20 Data Elements

resulted in the elimination of two metrics from the system.

Clearly, there was no significant impact on any of the 11

Quality Factors.

3.5.6 Categories of Data Elements

SAI classified 146 GE)Qata Elements before the

selection process described above. Of these, 93 fell into

the Keep Category, 33 fell into the Reserve Category, and

20 fell into the Drop Category. Tables III-F to III-H

list the Data Elements according to category along with

the score under all these selection methodologies. The

Data Element listed by the SAI sequence code (numerical

value) and the GE code, as defined in RADC-TR-80-109, are

in the left columns of the tables. The columns to the

right show the scores of the data elements derived from

the Sum, Vector Length, and Product Scoring methodologies.

Il-~ 17

'Rn SrnRE

1 CLERK 5

2 'ENTRY LEVEL PROGRAMMER 4

3 EXPERIENCED PROGRAMMER 3

4 MATH ANALYST 2

5 SYSTEM ANALYST 1

WE REVERSED THE SCORES SUPPLIED BY GE TO BE IN LINE WITH THE

SCORING METHODOLOGY OF SAI.

(E) (E)

1 MINIMUM 5

2 141NOR 4

3 MODERATE 3

4 MAJOR 2

5 MAXIMUM 1

FEIGURFi 1

SCORING MFTHODOLOGY

III- 18

n ,in I I I , -'- I i. "-i , um

!I II II iN

,!,

4*

0

III- 19

MOO!, - D

f4LML

-11- 20

-

A 4 pe

CN.

- - r

111_2

SELECTI ON_

ORIGIN KEEP RESERVE DROP

FACTOR 11 11 0 0

CRITERIA 22 22 0 0

METRIC 39 33 4 2

DATA ELEMENT 146 93 33 20

TABLE III-E

DATA ELEMENT SELECTION STATISTICS

111-22

___________________________ "mr~ .*. ,,

3.6 MAPPING OF G.E. METRICS INTO SOFTWARE METRICS USED IN
THIS HANDBOOK

All 126 data elements in the Keep and Reserve categories

were selected for the Metrics handbook. The ones in the Drop

category were not included. Tables III-F and III-G list the

data elements that were suitable for the "Handbook". They

were incorporated into the worksheets according to the

Framework described in Subsection 3.1.

The bottom-up approach, going from data element to metric

to criteria and finally Quality Factor according to the

original framework was observed and produces the modules of

this handbook.

I

t

111-23

17-1

__.- -- • I - 1| Il - 1 - .

Vector Vector
Sum L Product E Sum Length Product

1 33
CP.1 15 8.7 12S Er.4(2) 11 6.6 45

7N.1(1) 14 8.1 100 Er.2(1) 11 6.6 45
3 17 --

CP.1(2) 13 7.7 75 AC.1(3) 10 6.5 20
4 117

C .1(3) 13 7.7 75)SD.1 11 6.5 45
5I -

CP.1(4) 13 7.7 75 SD.2() 11 6.5 45

AC.1(1) n 7.1 60 SD.2(3) 11 6.5 45

AC.1(2) 12 7.1 60 SD.2(4) 11 6.5 4S

121
TN.1(2) 12 7.1 60 SD.2(S) 11 6.5 45

122
AY.1(5) 12 7.1 60 SD.2(6) 11 6.5 45

8 123
CP.1(7) 12 7.1 60 SD.3(2) 11 6.5 45

1 124
Cp.1C1) 12 6.9 64 SD.2(7) 1 6.5 45

126 20
SD.3(4) 11 6.7 40 CP.1(1) 11 6.4 40

97 19
M. 1C1) 11 6.7 40 MA.1(2) U 6.4 48

96 143
SS.1(2) 11 6.7 40 04. 2(4) .11 6.4 48

57 142
0L1(2) 11 6.6 45 01.2(3) 11 6.4 48

-"- 141 -.-
"7N.1(3) 11 6.6 45 04.2(2) 11 6.4 48

- . ----

ff.S(2) 1 6.6 45 CP.1(3) 10. 6.0 32

TABLE III- F

DATA ELEMENTS IN THE KEEP CATEGORY

III- 24

t i, i

II- II ----. I-- I - -.-. - .-

Vector Vector
s. - Lh Product U S.m L h , Product

140
AA. (1) 10 6.0 32 o.2) 10 5.8 36

SD.3(3) 10 60 32 O ..2 (5) 10 5.8 36

137 63
SD.2(Z) 10 6.0 32 O 2 (6) 10 5.8 36

136 93
E.3(l) 10 6.0 32 -G ..2(2) 10 s.8 36

6 107
..1 (5) 10 5.8 36 SD.3(1) 9 S.7 16

10 132
AY.1(2) 10 s.8 36 MI.1(4) 9 S.4 24

12 105
ET.3(1) 10 5.8 36 C.2(2) 9 5.4 24

.13 104
ET.4(1) 10 5.8 36 CS.1(4) 9 S.4 24

14 103

ET.S() 10 5.8 36 C5.1(2) 9 5.4 24

23 102
04.1(6) 10 5.8 36 C.1(3) 9 5.4 24

24 101
,04.2(7) 10 5.8 36 CS.I(1) 9 5.4 24

25 100

04.2(1) 10 5.8 36 EE.2(1) 9 5.4 24

26 9 -
EL 1 10 5.8 36 GE.2(4) 9 S .4 24

-43 94

.1(6) 10 5.8 36 GE.2(3) 9 5.4 2448
1 8 o

04.1(1) 10 5.8 36 DC.1(1) 9 5.4 2449
Z7

OL1(3) 10 5.8 36 CC.1(1) 9 S.4 24
60 --

O4.1(4) 10 5.8 36 OP.1(2) 9 5.4 24

TABLE II-F cont'd)

DATA ELEMENTS IN THE KEEPi CATG)RY

I I I 2 5

1-I-

- -.
-

, U

Vf-tor Vemor
&M Si mr Pro&=c f 5w. lmf Product

80 29
M.,3(4) 9 S.2 27 TL1 8 s.1 12

- -- -i

79 146
Er. 3(3) 9 S.2 27 SE.1(6) 8 5.1 12

78 64
ELT.3(2) 9 S.2 27 IN. 1(1) 8 4.7 18

77 145
Er.2(4) 9 S.2 27 M.2(3) 8 4.7 is

75 46
Er.2(2) 9 5.2 27 CC.1(2) 8 4.7 18

76 70
ET.2(S) 9 5.2 27 SI.1(6) 8 4.7 18

67 78
IN.2(2) 9 5.2 27 IN.3(1) 8 4.7 18
66 49

IN.2(1) 9 5.2 27 DC.1(2) 8 4.7 18
138 9

SI.1(4) 9 5.2 27 AY.1(1) 8 4.7 18
- I

7 82
(2.1(6) 9 5.2 27 SI.1(3) 8 4.7" 18

61 83
04.1(5) 9 5.2 27 SI.1(5) 8 4.7 18

32 106
Er.1(2) 9 S.2 27 51.4(2) 8 4.7 18

35
S1.1(1) 8 S.1 12

TABLE 1II-F (cont'd)

DATA ELEMENTS IN THE KEEP CATEGORY

111-26

I, • t

S sm Vector Promt ##. Vector Pr ct

99 1100.2(2) 7 46 8 I4'1 7 4.1 9 ,

31111
FT-r1 7 4.6 a $1.4r9L 7 4.1 9

38 112
SE.1(1) 7 4.6 8 SI.43) 7 4.1 9

39 11S
SE.1(2) 7 4.6 8 $I.4(1) 7 4.1 9

96 144
EX 1(1) 7 4.4 9 C. 2() 7 4.1 9

73 113
AY.1(4) I 7 4.1 12 SI.4(4) 7 4.1 9

72 135
ET. 1(3) 7 4.1 12 S.1(4 6 3.7 6

65 128
I. 1(2) 7 4.1 12 SI.4(10) 6 3.7 6

74 91
.11.2(2) 7 4.1 12 6 3.7 6

85 81
2.1(1) 7 4.1 12 S!.3 6 3.7 I6

83 69
MD.2(3) 7 4.1 12 IN. 3(2) 6 3.7 6

88 50
14.2(4) 7 4.1 12 DC.1(3) 6 3.7 6

89 4
MD.2(5) 7 4j. 12 BE.2(S) 6 37 6

90 43
M0.2(6 C 7 4.1 12 B.3() 6 3.7 6

92 42
GE.2() 7 4.1 12 .2(3) 6 3.7 6

108 36
SI.4(6) 7 4.1 9 SI.1(2) 6 3.7 6

109SI.4(7) 7 4.1 9

TABLE III-G

DATA ELENENTS IN THE RESERVE CATEGORY

III- 27

.. . , , r " - -- .

Sum Vector Product f Sum Vector Product
37 131GE. 1 5 3.3 3 13) 2.4 2

45 130
IR..2(4) 5 3.3 3 EE.3r2l 4 2.4 2

47 114
CC. 1(3) $ I 3.3 3 9 .4 (LS)L 4 2.4 2

48 84
X .1(4) 5 3.3 3 .21) 4 2.4 2

51 71op.1(4) 5 3.3 3 - -. 1 r7) 4 2.4 2

52 40OP.. I 5) i . 3. 3 3 SE.AMS 4 2.4 2

86 3014U.1(2) 5 3 3. 3 .AY. 1(3) 4 2.4- 2

129 41
E. 1 M 5 3.3 3 SE.1(7) 3 1.7 1
127 116

_.2(2) 3 3,0 4 Co.1 3 1.7 1
134 139

EC. 2 (31- 5 3.0 .,4 E. 1M 3 !,.7 1

TABLE 111-H

I-ATA P.U NTs 11 THE DROP CATEGORY

111-28

SECTION IV

PILOT APPLICATION OF SOFTWARE METRICS HANDBOOK

4.1 TRAINING PHASE OF SOFTWARE METRICS HANDBOOK

A training course for ESD/TOEE personnel on the metrics

concept and use of the "handbook" procedures was held at ESD/TOEE

during the last phase of the contract. The purpose of this

training course was to demonstrate that the Software Metrics

"handbook" can easily be learned by inexperienced personnel.
The materials developed for this course and modified as a result

of this training phase include: (1) Software Metrics Handbook;

(2) Quality Factor Module Instructions; (3) Quality Factor

Modules; (4) Data Element Dictionary; (5) Instructor's Guide;

(6) Course Outline; and related training material and transparencies.

These materials will allow ESD/TOEE to instruct their personnel

in the application of the Software Metrics Handbook.

4.2 APPLICATION OF SOFTWARE METRICS HANDBOOK TO A C3 SYSTEM

The Software Metrics Handbook was applied to an actual C
3

system by ESD/TOEE personnel working with SAI personnel. The

system, provided by ESD, was the RADAR Prediction System (RAPS).

The documentation for this system consisted of the System

Specification, Development Specifications for various subsystems,

Product Specifications for various subsystems and Source Code.

The Metrics were applied on six separate occasions, the purpose

being two-fold: To validate the applicability of the Software

Metrics Handbook and to improve the Handbook components. This

application resulted in the "fine tuning" of the Software Metrics

Handbook.

4.3 ISSUES AND RESOLUTIONS

During the application of the Software Metrics Handbook

several issues were raised regarding the Handbook components.

These issues and resolutions are as follows:

IV-l

Issue #1: The Quality Factor Selection method was too

proceduralized.

Resolution #1: The General Instructions were modified to
deproceduralize the selection method.

Issue #2: Certain information required by the Quality Factor

selection forms was deemed unnecessary.

Resolution #2: This information requirement was removed
from the Quality Factor Selection Survey Form.

Issue #3: Information should be included regarding cost, time,

and scoring f Software Metrics during the tradeoff

process.

Resolution #3: These issues are addressed in the training
materials prepared for ESD to teach the use
of the Handbook.

Issue #4: The flow of information between the General
Instructions and the Module Instructions should be

clarified.

Resulution #4: This clarification was achieved by modifying

Section IV of the General Instructions -

"How The Handbook Works".

Issue 5: The definition of "Module" must be clarified and the

concepts of and applications of system level as

opposed to module level should be discussed.

Resolution #S: These clarifications and discussions are
included in the General Instructions, Section

I - "Software Metrics".

Issue #6: More information must be supplied regarding the

correct sequence for applying the worksheets.

Resolution #6: This information is provided in the General

Instructions, Section I - "Software Metrics".

IV-2

Issue #7: The section labeled, "Source" on the worksheets

should be filled in by the person using it with

the name of the system.

Resolution #7: The worksheet format was changed and instructions

included in the General Instructions.

Issue #8: The concepts of granularity and subjectivity

regarding the data elements need to be addressed

in the Theoretical Supplement.

Resolution #8: Included in Section 5.2 of the Theoretical

Supplement.

Issue #9: Blocks marked "System Level", "Module Level", and

"Subsystem Level" should be added to the worksheets.

Resolution #9: The worksheets were modified to reflect this

change.

Issue #10: Products may not map uniquely into a single life

cycle phase. As a result, information referenced

in preceding phases may be required to apply

Software Metrics at a current phase.

Resolution #10: This issue is resolved in the General

Instructions.

Issue #11: Emphasis should be placed on the content of

products and not the name or type of products

when applying the Software Metrics to system

documentation.

Resolution #11: This issue is resolved in the General

Instructions.

Issue #12: The Metrics "Training Checklist" in the Preliminary

Design phase of the Quality Factor Module Usability

should be included in the Requirements Analysis

phase and deleted from the Prelimanary Design phase.

Resolution #12: The worksheets in the Usability. Module were

modified.

IV-3

T _

Issue #13: There is a lack of information regarding standards

and conventions etc. in the Detail Design Phase.

Resolution #13: This issue was resolved by including the

Computer Program Development Plan (CPDP)

in the product tables for the eleven Quality

Factor Modules, and including this information

in the General Instructions, Section II

"Life Cycle Considerations".

Issue #14: The Quality Factor Modules may not be easily

reproduced for use by ESD personnel.

Resolution #14: The masters will be delivered to ESD unbound

to facilitate making copies.

Issue #15: All modules may not be applicable to all Computer

Program Configuration Items (CPCI) or not applicable

due to system characteristics.

Resolution #15: The General Instructions were expanded to

include this information.

Issue #16: The Interpretation Worksection should be changed
to evaluate the reviewable products on a 1 to 10

scale subjectively.

Resolution #16: The worksection was revised to contain the

following question: "What is your opinion of

the reviewed products, based on the data

elements (or metrics or criteria) above?"

(1-10) - (0 if you have no opinion). More

detail is provided in this Theoretical

Supplement in Section V.

Issue #17: There should be information provided explaining

the concept of threshold values based on historical

data.

Resolution #17: This information is found in this Theoretical
Supplement in Section V and in Section JV of the

General Instructions.

IV-4

SECTION V

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER ACTION

5.1 ALTERNATIVE USES FOR SOFTWARE METRICS

Software Metrics is a set of procedures for measuring es-

sential aspects of software systems. Software Metrics was

principally designed to be used as a tool to measure certain

qualities in a system under development through the calculation

of Quality Factor scores which are ultimately evaluated against

historical data. These measures of the Quality Factor of a sys-

tem are to be used as "early-warning" signals to point out dif-

ficiencies as they develop, so that they can be corrected as

easily and inexpensively as possible. However, it is not always

possible to use Software Metrics in Lhis way because of the

changes in policy or unforseen events during a software develop-

ment. Therefore, versatility was designed into Software Metrics

in order to allow alternative utilizations of this tool.

SAI has identified six alternative methods of using Soft-

ware Metrics; (1) Use as measure of the impact of revisions to

software, (2) Use as a review tool to determine the appropriate-

ness of redesign, (3) Use to perform retrospective analyses of

existing systems, (4) Use as performance incentives based on

Software Metrics scores, (5) Use to develop guidelines for in-

house development of software, and (6) Use to maintain control

and visibility of software development. Each of these alter-

natives will be discussed further in the remainder of this section.

5.1.1 Software Metrics Used to Measure Software Revisions

When revisions are made to software, the impact of

these revisions could be measured by applying Software

Metrics to the revised software. If the same Quality

V-1

.4_ _ _ _ __......

Factors are chosen for the revised application and scores

of the original software have been maintained, the revised

and original scores could be compared to determine if the

revisions had any negative or positive effect on the soft-

ware. However, if different qualities have been determined

to be important, separate sets of Quality Factors could be

applied to the revised software. In this case, these scores

could be maintained as historical data for future reference

and comparison.

5.1.2 Software Metrics Used as a Review Tool

When a redesign of some software is being considered,

Software Metrics could be applied to the existing software

to determine the weak areas in the design with respect to

the newly desired characteristics. The redesign could be

guided by the Quality Factor scores that are low with res-

pect to the newly desired characteristics. For instance,

if a particular piece of software was not originally written

with maintainability in mind, the Maintainability Quality

Factor Module could be applied to the software. If Main-

tainability scored low, then work to improve maintainability

would be needed.

5.1.3 Software Metrics Used to Perform Retrospective Analyses

For systems that were developed without the Metrics

being applied during development, Software Metrics could be

applied after development is over to determine where in the

development problems if any originated. For example, if it

has been determined that a particular system is very difficult

to maintain, the Maintainability Software Metrics could be

applied to all of the development documentation to find the

V-2

V I I-I

source of the maintainability problem. Alternatively, if a

system is determined to be outstanding in a particular
quality, the Software Metrics could be applied to that soft-

ware and the results could be used as examples of good
scores to compare against future development efforts.J

5.1.4 Software Metrics Used as Performance Incentives

Software contractors could be given performance in-

centives based on Software Metric scores. Software would

be evaluated based on Software Metric scores. This would

provide incentive to the contractor to design the desired

qualities into the software.

5.1.5 Software Metrics Used to Develop Guidelines

If measurement of software quality is not desired, or

if historical figures are not yet available so that that

type of evaluation is not possible, software could be designedI
and implemented following guidelines developed from the Data
Elements of the Metrics Handbook. Instead of measuring the

existence of Quality Factors, the Data Element questions

can be used to develop guidelines that reflect good pro-

I

gramming practice.

5.1.6 Software Metrics Used for Control and Visibility

Software Metrics provides a stuctured approach to

control and observation of the development of software

throughout its life cycle. If the software metric data is

collected, but not calculated to produce metric scores, it

provides control and visibility to the development. Soft-

ware Metrics data tracks the development of the system via

the products produced during the life cycle. Life Cycle

control of the development is thus easily accomplished.

V-3

7!

5.2 MANAGEMENT CONCERNS

The use of Software Metrics as a Quality Assurance tool re-

quires continuing concern by management of two major issues. The

first issue is the granularity and subjectivity of several of the

Data Element questions. The second issue is the necessity to

track and monitor the collection of scores and evaluations and

the developments of a Metric Data Base.

Granularity and subjectivity of the Data elements can be

decreased over time by developing standard guidelines for re-

solving each of the questions which are determined to lack granu-

larity or are too subjective. A procedure for monitoring and re-

solving these issues should be developed.

The second issue that management must consider is the neces-

sity to track and monitor both the collection of the scores and

evaluations. Tracking and monitoring of the scores is necessary

in order to develop a Metric data base. These scores can be used

to compare future re-applications of Software Metrics to the same

system, or in the devleopment of other systems. The data base can

be used to compare history with current development efforts.

Each Metric, Criteria, and Factor worksheet contains an

Evaluation Worksection. It is important to note that this eval-

uation is subjective on the part of the person applying the Soft-

ware Metrics. For instance, at the Criteria level, the Evaluation

Worksection asks: "What is your evaluation of the reviewed pro-

ducts based on the Metrics above? (1-10 or 0 if you are
unable to evaluate)." When a person is evaluating a Criteria it

would be possible to have one Metric with a high score and another

with a low score. The evaluator could decide that the Criteria

should be evaluated fairly high (S-8) because in his opinion the

low scoring Metric did not have much of an impact on the system.

gV-4

bM

Because of this subjective nature, a particular evaluator may

consistantly evaluate high, or consistantly evaluate low. Some

method of tracking and monitoring this type of scoring should be

developed so that an analysis of the scores and scorer can be

done as a means of giving a proper interpretation to the histori-

cal data in the data base.

5.3 CONCLUSIONS AND RECOMMENDATIONS

Software Metrics is a state-of-the-art tool, and as such

is still in its infancy. Therefore, some of the objectivity de-

sired by a quantification of software quality has not yet devel-

oped. Objectivity develops as guidelines are set and as threshold

values are developed. Secondly Software Metrics are immediately

valuable in their present subjective state because it can be used

as a checklist for monitoring software throughout its acquisition

life cycle. This makes Software Metrics easy to use, easy to

teach, and not time consuming to apply. This is currently the

most feasible use of the software metrics. Use as a guideline

and for control and visibility as earlier discussed in 5.1.5 and

5.1.6, provide immediate value from their application.

SAI recommends four actions be taken by ESD to build a

metric history: (1) Apply the Software Metrics to a wide variety

of software development efforts. As systems reach the maintain-

ence phase independent assessments of the quality of the system

should be performed and compared to the quality evaluation as

measured by metrics; (2) Establish a process to evaluate and up-

date threshold values as they are developed; (3) Maintain a Soft-

ware Metrics historical data base; and (4) Improve threshold

value believability over time by comparing independent quality

assessments with the Software Metric Data Base.

V-5

APPENDIX A

LIST OF WORKS CITED IN SOFTWARE METRICS LITERATURE REVIEW

[BAKF72] Baker, F.T.
"Chief Programmer Team Management of Production
Programming". IBM Systems Journal, Vol. 11, No. 1,
pp. 56-73, 1972.

[BOEB79b] Boehm, Barry W.
"Software Engineering - As It Is". Proceedings
of the Fourth International Conference of software
Engineering: 11-21, September 1979.

[BROF74] Brooks, F.P. Jr.
The Mythical Man-Month: Essays on Software
Engineering. Reading, MA: Addison-Wesley
Publishing, 1974.

[CAVJ78] Cavano, Joseph P. and McCall, James*A.
"A Framework for the Measurement of Software Quality".
Performance Evaluation Review 7 (November 1978):133-9.

[CHER80] Cheung, Roger C.
"A User-Oriented Software Reliability Model".
IEEE Transactions on Software Engineering,
Vol. SE-6 (March 1980): 118-Z5.

[CURB80b] Curtis, Bill.
"Measurement and Experimentation in Software.
Engineering". Proceedings of the IEEE: 1144-1157,
September 1980.

[FREN77] French, N.
"Programmer Productivity Rising Too Slowly: Tanaka".
Computerworld, Vol. 11, No. 32, 1977.

[GILT77] Gilb, Tom
Software Metrics. Cambridge, MA: Winthrop
Publishers, Inc., 1977.

A-1

O R O ii I
III -l I .

[GLAR79] Glass, Robert L.
Software Reliability Guidebook. Englewood Cliffs,
NJ: Prentice l a l I , Inc., 1979.

[JENR79] Jensen, Randall W. and Tonies, Charles C., eds.
Software Engineering. Englewood Cliffs, NJ: Prentice-
Hall,. Inc., 1979

[KOSA75] Kossiakoff, A., et al.
"DOD Weapon Systems Software Management Study,"
Johns Hopkins University Applied Physics Laboratory
Report SR 75-3, June 1975.

[KOSD741 Kosy, D.
"Air Force Command and Control Information Pro-
cessing in the 1980s: Trends in Software Technol-
ogy," RAND Report R-1012-PR, June 1974.

[LAMR80] Lamkey, Robert J. and Pavy, Curtis T.
Software Control During Development and Adsuisition.
Report No. AFIT-LSSR-62-80, Air Force Institute of
Technology, Wright-Patterson AFB, OH, School of
Systems and Logistics, AD-A039 329. June 1980.

[LIEB79] Lientz, B.P. and Swanson, E.B.
"Software Maintenance: A User/Management Tug-of-
War". Data Management, April 1979, pp. 26-30.

[LITB8O] Littlewood, Bev.
"Theories of Software Reliability: How Good Are They
and How Can They Be Improved?" IEEE Transactions on
Software Engineering, Vol. SE-6 (September 1980):
489-500.

[MARR80] Marsh, R.
"Air Force C Technologies," SIGNAL, Vol. 3.5,
No. 1, September 1980.

[MCCJ77a] McCall, J.; Richards, P.' and Walters, G.
Factors in Software Quality, 3 Vols. (A049014)
(A049015) (A0490SS), RADC-TR-77-369, November 1977.

[MCCJ80b] McCall, J. and Matsumoto, M.
Software Quality Measurement Manual, RADC-TR-80-109,
Vol. 2, April 1980. (ADA086986)

[MCCJ80c] McCall, J.
"An Assessment of Current Software Metric Research".
IEEE Publication, No. OS31-6863/80/0000-0323, 1980.

A-2

-9 W__..

[MCCT76] McCabe, Thomas J.
"A Complexity Measure." IEEE Transactions on
Software Engineering, Vol. SE-2 (December 1976):
308- 3Z0

(MILH71] Mills, H.D.
"Top-Down Programming in Large Systems." Debug-
Iing Techniques in Large Systems. R. RustiinEa.
Englewood Cliffs, N.J.: Prentice Hall, Inc., 1971.

[MUSJ80b] Musa, John D.
"The Measurement and Management of Software Relia-
bility." Proceedings of the IEEE: 1131-1143,
September 1980.

[MYEW78] Myers, W.
"The Need for Software Engineering." Computer,
February 1978.

[NELR78] Nelson. R.
"Software Data Collection and Analysis." Draft
Report, RADC, September 1978.

[PUTL79a] Putnam. Lawrence H. and Fitzsimmons, Ann.
"Estimating Software Costs." Datamation,
September 1979, pp. 189-90+.

(PUTL79b] Putnam, Lawrence H. and Fitzsimmons, Ann.
"Estimating Software Costs." Datamation,
October 1979, pp. 171-2+

(SHNB80] Shneiderman, Ben.
Software Psychology - Human Factors in Computer
and Information Systems. Cambridge, MA: Winthrop
Publishers, Inc., 1980.

A

A-3

